journal presentation

Dr. Bahari

Archives of Physical Medicine and Rehabilitation

Physical Medicine

ACEH

journal homepage: www.archives-pmr.org

Archives of Physical Medicine and Rehabilitation 2022;000: 1-9

REVIEW ARTICLE (META-ANALYSIS)

Efficacy of High-Frequency Repetitive Transcranial Magnetic Stimulation at 10 Hz in Fibromyalgia: A Systematic Review and Metaanalysis

Ping-an Zhu, BS,^{a,b,}* Ju-Ying Xie, MD,^{c,*} Howe Liu, PhD,^d Youliang Wen, PhD,^b Yin-Jin Shao, MD,^e Xiao Bao, PhD^a

From the ^aDepartment of Rehabilitation Medicine, Yuebei People's Hospital, Shaoguan, China; ^bSchool of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China; ^cDepartment of Rehabilitation Medicine, Affiliated Hospital of Xiangnan University, Chenzhou, China; ^dDepartment of Physical Therapy, University of North Texas Health Science Center, Fort Worth, TX; and ^eDepartment of Rehabilitation Medicine, Ganzhou People's Hospital, Ganzhou, China.

Introduction

- Fibromyalgia syndrome (FMS):
- o common disease
- chronic, widespread, or regional musculoskeletal pain
- general public prevalence rate is 2%
- o more common in women
- The ratio of women to men in fibromyalgia is about 2:1

Chronic pain in fibromyalgia can cause:

excessive fatigue
mood disorders
cognitive dysfunction
sleep disorders
affects the quality of daily life

etiology of FMS:

• is still unclear

- Genetic factor
- Environmental factors
- Psychological factors
- Neuropathy
- Neuromodulation

 most credible mechanism may be pain regulation and central sensitivity disorder

treatment

Drugs :

• Gabapentinoid (pregabalin, gabapentin)

• tricyclic compounds (amitriptyline, cyclobenzaprine)

• serotonin-norepinephrine reuptake inhibitors (duloxetine, milnacipran)

treatment

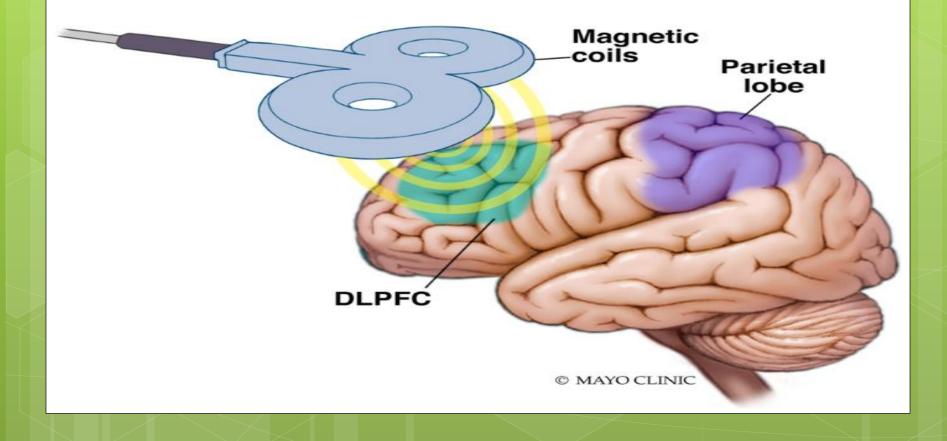
Nondrug:

 Education o cognitive behavioral therapy • exercises otai chi oyoga • chiropractic techniques acupuncture o moxibustion

treatment

 in recent years, scholars have studied the imbalance of fibromyalgia central sensitivity and pain regulation

• Various neuroelectric stimulations


• repetitive transcranial magnetic stimulation (rTMS)

repetitive transcranial magnetic stimulation (rTMS)

- changes in brain activities and pain regulation and processing
- Low-frequency stimulation(<1Hz) : inhibitory effects on brain activity
- High-frequency stimulation (>5Hz): increases cortical excitability

site

left dorsolateral prefrontal cortex (DLPFC) left primary motor cortex (M1)

stimulation of (DLPFC) using low-frequency rTMS :

reduce pain and related symptoms by targeting spinal pain circuits and top-down pain modulation.

high-frequency rTMS to stimulate the (M1): have an analgesic effect and high-frequency rTMS may achieve direct antinociceptive effects by activating descending pain inhibitory controls

• There is currently no consensus on the optimal parameters for rTMS in FMS treatment.

• Therefore, we systematically reviewed the available literature

Search strategy

• PubMed, Embase, Cochrane, Ovid, Web of Science

• from the beginning until November 6, 2021

Inclusion criteria

- 1. only patients diagnosed with FMS according to the American Rheumatic Society diagnostic criteria
- 2. intervention method including 10-Hz highfrequency rTMS, but the treatment site is not limited
- Outcome indicators must have a scale for assessing pain, depression, and quality of life, such as (VAS), (BPI), (HDRS),...
- 4. literature is original and provides sufficient information

exclusion criteria

1. animal experiments
2. nonrandomized controlled trials
3. non-10 Hz frequency rTMS treatment

Search results

- A total of 488 articles were searched
- 7 studies were included
- 217 patients with FMS were included
- 3 studies on the left MI
 3 studies on the left DLPFC
 1 study on both the left MI and the left DLPFC

Table 1 Characteristics of the included studies

		Experimental	Control		Stimulation	
Author	Age (y), Mean ± SD	Group (n)	Group (n)	Intervention Protocol	Site	Outcome
Altas et al ³¹	M1: 46.3±9.01 DLPFC: 47.9±7.89 Sham: 48.2±9.38	MI: 10 DLPFC:10	10	10-Hz rTMS, 90% strength; 15 times (5 times/wk)	Left M1 and left DLPFC	Pain: VAS Depression: BDI Living quality: FIQ
Tekin et al ²⁹	Experimental group: 42.4±7.63 Control group: 46.5±8.36	27	24	10-Hz frequency, 100% strength, and 10 consecutive treatments were performed	Left M1	Pain: VAS Depression: MADRS Living quality: World Briefing on Healthy Quality of Life
Bilir et al ³²	Experimental group: 46.70±9.06 Control group: 43.80±9.37	10	10	10-Hz rTMS, 14 sessions: 10 daily (5d/wk, 2 wk), and 4 weekly (1d/wk, 4 wk)	Left DLPFC	Pain: VAS Depression: HADS Living quality: FIQ
Fitzgibbon et al ³³	Experimental group: 45.07±11.02 Control group: 46.25±15.04	14	12	10-Hz frequency, 120% strength, daily (Monday-Friday) rTMS for 4 consecutive weeks (20 times in total)	Left DLPFC	Pain: VAS Depression: BDI Living quality: FIQ
Mhalla et al ³⁴	Experimental group: 51.8±11.6 Control group: 49.6±10.0	20	20	10-Hz frequency, 80% strength, 14 sessions of stimulation	Left M1	Pain: BPI Depression: BDI Living quality: FIQ
Passard et al ³⁰	Experimental group: 52.6±7.9 Control group: 55.3±8.9	15	15	10-Hz frequency, 80% strength, 10 sessions in 2 wk	Left M1	Pain: BPI Depression: BDI Living quality: FIQ
Short et al ⁹	Experimental group: 54.20±8.28 Control group: 51.67±18.19	10	10	5 times/wk for 2 wk 10-Hz pulse train duration (on time) 5 s, power (intensity) 120% strength	Left DLPFC	Pain: average daily pain Depression: HDRS Living quality: FIQ

Abbreviations: HADS, Hospital Anxiety and Depression Scale; MADRS, Montgomery-Asberg Depression Rating Scale.

• Effect of 10-Hz frequency rTMS on pain:

significantly associated with reduced pain compared with sham stimulation in controls

• Effect of 10-Hz high-frequency rTMS on depression:

depression was not significantly better than that of the control group

• Effects of 10-Hz frequency rTMS on quality of life:

significantly improved the quality of life

• **Subgroup analysis:** MI region and DLPFC region

The results showed no statistical significance

Conclusions

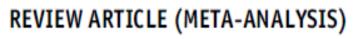
 significant improvement in pain and quality of life
 no significant effect was shown in depression

Conclusions

• DLPFC high-frequency rTMS appears to be more effective for analgesia.

• DLPFC low-frequency rTMS may be more promising in the treatment of depression.

• M1 high-frequency rTMS may be more effective in improving quality of life.



Archives of Physical Medicine and Rehabilitation

journal homepage: www.archives-pmr.org

Archives of Physical Medicine and Rehabilitation 2022;103: 1436-47

Effects of Transcranial Direct Current Stimulation on Poststroke Dysphagia: A Systematic Review and Meta-analysis of Randomized Controlled Trials

Na Zhao, BSc,^{a,b} Weiming Sun, MEd,^c Zebu Xiao, MB,^{a,b} Chunyun Fan, BSc,^{a,b} Bowen Zeng, BSc,^{a,b} Kaiying Xu, BSc,^{a,b} Meng Liao, BSc,^{a,b} Wei Lu, MM^{a,b,d}

From the ^aDepartment of Rehabilitation Medicine, Jiangxi Provincial People's Hospital, Nanchang; ^bFirst Affiliated Hospital of Nanchang Medical College, Nanchang; ^cDepartment of Rehabilitation Medicine, First Affiliated Hospital of Nanchang University, Nanchang; and ^dDepartment of Rehabilitation Medicine, Nanchang Institute of Technology, Nanchang, China.

IntroductionOysphagia

o common complication of stroke

• incidence of dysphagia after acute stroke is 78%

 increase the incidence of aspiration pneumonia, malnutrition and death due to asphyxia

Introduction

Transcranial direct current stimulation (tDCS)

 Noninvasive brain stimulation technology
 regulates the transmembrane potential of neurons to produce hyperpolarization or depolarization by transmitting weak currents through the skull

- increase or decrease cortical excitability
- can cause motor function and psychophysiological changes

Search strategy

• PubMed, Cochrane Library (CENTRAL), Web of Science, VIP, CNKI, and Wanfang

Inclusion criteria

- 1. all patients with stroke that was confirmed by MRI
- 2. tDCS was used as the intervention
- 3. at least 1 of the following standardized, validated dysphagia scales
- 4. clinical RCT of tDCS for the treatment of dysphagia after stroke

Exclusion criteria

- (1). The article was not an RCT
- (2) the article was a repetitive literature
- (3) swallowing dysfunction was caused by other diseases
- (4) poor rating on the Physiotherapy Evidence Database Scale

Search results

• total of 273 studies

• 16 RCTs were included in the present study

Stimulation protocols

• All included RCTs were performed using anode tDCS

o 5 of them were on the unaffected hemisphere
o 7 on the affected hemisphere
o 3 included bihemispheric stimulation
o One trial used dual stimulation
(anodal tDCS to the affected and cathodal tDCS to
the unaffected);

Overall summary effect

- overall, statistically significant pooled effect size in favor of tDCS on poststroke dysphagia
- Five trials had a small negative effect.
- Thirteen trials had moderate to large positive effect sizes,
- but only 7 trials were considered statistically significant

• The tDCS on the affected vs unaffected hemisphere revealed a moderate and significant pooled effect size for both

 tDCS in the acute vs chronic stroke phase yielded a moderate and significant effect size for both groups

Stimulation intensity

- The 2 high-intensity stimulation studies that used 2 mA showed a small, nonsignificant effect size of 0.36 (CI, 0.19to 0.91; P=.20).
- Application of 1 mA current strength for 20 min/d, as in the 7 RCTs, revealed a moderate, significant effect size of 0.47 (CI, 0.13-0.81; P=.006).
- 2 studies that used 1.4 mA and 1 study that used 1.6 mA showed a moderate, significant effect size of 0.53 (CI, 0.07-0.99; P=.02) and 1.39 (CI, 0.69-2.08; P<.001)

Stimulation intensity

- Two studies that used 1.2 mA showed a large but nonsignificant effect size of 2.50 (CI, 0.56 to 5.56;P=.11).
- One study that used 1.5 mA showed a moderate but nonsignificant effect size of 0.57 (CI, 0.06 to 1.20; P=.08)

Stroke location

- Nine trials using tDCS to the unilateral hemisphere demonstrateda large and significant pooled effect size of 0.82 (CI,0.11-1.53; P=.02)
- Three studies on the brain stem demonstrated a large and significant pooled effect size (1.06,CI 0.58-1.53; P<.001),
- Studies using tDCS to the bulbar paralysis demonstrated a large and significant pooled effect size of 0.71 (CI, 0.18-1.25; P=.008).
- Two studies on the cerebellum and basal ganglia showed a small,nonsignificant effect size of 0.40 (Cl, 0.32 to 1.12; P=.28)and 0.57 (Cl, 0.06 to 1.20; P=.08).

Discusion and Conclusions:

- Our study, based on a large sample size from all RCTs, showed that tDCS improves swallowing function in patients with poststroke dysphagia.
- the excitatory stimulation of tDCS on both the unaffected and affected sides was statistically significant in the improvement of poststroke dysphagia
- o affected > unaffected
- o chronic > acute
- o low-intensity(=1mA) > high-intensity(>1mA)